مشخصات پژوهش

صفحه نخست /Utilization of LSSVM ...
عنوان
Utilization of LSSVM algorithm for estimating synthetic natural gas density
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
LSSVM; gas engineering; density; predicting model; natural gas
چکیده
In the gas engineering the accurate calculation for pipeline and gas reservoirs requires great accuracy in estimation of gas properties. The gas density is one of major properties which are dependent to pressure, temperature and composition of gas. In this work, the Least squares support vector machine (LSSVM) algorithm was utilized as novel predictive tool to predict natural gas density as function of temperature, pressure and molecular weight of gas. A total number of 1240 experimental densities were gathered from the literature for training and validation of LSSVM algorithm. The statistical indexes, Root mean square error (RMSE), coefficient of determination (R2) and average absolute relative deviation (AARD) were determined for total dataset as 0.033466, 1 and 0.0025686 respectively. The graphical comparisons and calculated indexes showed that LSSVM can be considered as a powerful and accurate tool for prediction of gas density. 1.
پژوهشگران راضیه رضوی پاریزی (نفر اول)، محمد نوید کاردانی (نفر دوم)، علی رضا قنبری (نفر سوم)، میلاد جان قربان (نفر چهارم)، علی رضا باغبان (نفر پنجم)