مشخصات پژوهش

صفحه نخست /High resolution middle ...
عنوان
High resolution middle eastern soil attributes mapping via open data and cloud computing
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Soil Science; Pedometry; Random Forest; Google Earth Engine; Uncertainty.
چکیده
Soil presents a high vulnerability to the environmental degradation processes especially in arid and semiarid regions, requiring research that leads to its understanding. To date, there are no detailed soil maps covering a large extension of the Middle East region, especially for calcium carbonate content. Thus, we used topsoil data (0–20 cm) from more than 5,000 sites for mapping near 3,338,000 square km of the Middle East. To do this, we used covariates obtained from remote sensing data and random forest (RF) algorithm. Around 65% of the soil information was acquired from Iranian datasets and the remaining from the World Soil Information Service dataset. By using 30 covariates layers of soil, climate, relief, parent material and age features, we then trained and tuned prediction models—in R software— and used the optimal ones (according to minimum root mean square error) for making spatial predictions—within Google Earth Engine— of topsoil attributes and associated uncertainties at 30 m resolution. All covariates were relatively important for mapping topsoil attributes, ranging from 4% to 98%. Annual precipitation, temperature annual range and elevation were the most important ones (> 31%). Overall, the prediction models trained by RF explained around 40–66% of the variation present in topsoil attributes. The ratio of the performance to interquartile distance (RPIQ) ranged between 1.59 and 2.83, suggesting accurate models. Our predicted maps indicated that sandy and loamy soils with poor organic carbon levels, alkaline reaction and high calcium carbonate content were widespread in middle eastern topsoils. Our framework overcomes some limitations related to high computational requirements and enables accurate predictions of topsoil attributes. Our maps presented correct pedological correspondences and had realistic spatial representations and interesting levels of uncertainties.
پژوهشگران Raúl Roberto Poppiel (نفر اول)، José Alexandre Melo Demattê (نفر دوم)، Nícolas Augusto Rosin (نفر سوم)، Lucas Rabelo Campos (نفر چهارم)، محبوبه طیبی (نفر پنجم)، Benito Roberto Bonfatti (نفر ششم به بعد)، شمس اله ایوبی (نفر ششم به بعد)، سمانه تاجیک (نفر ششم به بعد)، فریده عباس زاده افشار (نفر ششم به بعد)، اعظم جعفری (نفر ششم به بعد)، نیکو حمزه پور (نفر ششم به بعد)، روح الله تقی زاده مهرجردی (نفر ششم به بعد)، Yaser Ostovari (نفر ششم به بعد)، نجمه عسکری (نفر ششم به بعد)، سلمان نعیمی (نفر ششم به بعد)، کمال نبی الهی (نفر ششم به بعد)، حسن فتحی زاد (نفر ششم به بعد)، Mojtaba Zeraatpisheh (نفر ششم به بعد)، فاطمه جواهری (نفر ششم به بعد)، مریم دوستکی (نفر ششم به بعد)، سمیه دهقانی (نفر ششم به بعد)، مهدی نادری (نفر ششم به بعد)، سعیده آتش (نفر ششم به بعد)، اکرم فرشادی راد (نفر ششم به بعد)، سلمان میرزایی (نفر ششم به بعد)، علی شهریاری (نفر ششم به بعد)، مریم قربانی (نفر ششم به بعد)، مهدی رحمتی (نفر ششم به بعد)