December 4, 2024
Mohammadjavad Jahanshahi

Mohammadjavad Jahanshahi

Academic rank: Assistant professor
Address: University of Jiroft, 8th km of Persian Golf Highway, Jiroft, Iran
Education: PhD. in Applied Chemistry
Phone: +989103060069
Faculty:

Research

Title
Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria
Type Article
Keywords
Researchers Seyyed Vahid Niknezhad, Mehdi Mehrali, Farinaz Riyahi Khorasgani, Reza Heidari, Firoz Babu Kadumudi, Nasim Golafshan, Miguel Castilho, Cristian Pablo Pennisi, Masoud Hasany, Mohammadjavad Jahanshahi, Mohammad Mehrali, Younes Ghasemi, Negar Azarpira, Thomas L. Andresen, Alireza Dolatshahi-Pirouz

Abstract

Bacteria can be programmed to deliver natural materials with defined biological and mechanical properties for controlling cell growth and differentiation. Here, we present an elastic, resilient and bioactive polysaccharide derived from the extracellular matrix of Pantoea sp. BCCS 001. Specifically, it was methacrylated to generate a new photo crosslinkable hydrogel that we coined Pantoan Methacrylate or put simply PAMA. We have used it for the first time as a tissue engineering hydrogel to treat VML injuries in rats. The crosslinked PAMA hydrogel was super elastic with a recovery nearing 100 %, while mimicking the mechanical stiffness of native muscle. After inclusion of thiolated gelatin via a Michaelis reaction with acrylate groups on PAMA we could also guide muscle progenitor cells into fused and aligned tubes – something reminiscent of mature muscle cells. These results were complemented by sarcomeric alpha-actinin immunostaining studies. Importantly, the implanted hydrogels exhibited almost 2-fold more muscle formation and 50 % less fibrous tissue formation compared to untreated rat groups. In vivo inflammation and toxicity assays likewise gave rise to positive results confirming the biocompatibility of this new biomaterial system. Overall, our results demonstrate that programmable polysaccharides derived from bacteria can be used to further advance the field of tissue engineering. In greater detail, they could in the foreseeable future be used in practical therapies against VML.