Keywords
|
Bioprinting, 3D bioprinting, 4D bioprinting, Tissue engineering, Hydrogels
|
Abstract
|
Amazing achievements have been made in the field of tissue engineering during the past decades. However, we have not yet seen fully functional human heart, liver, brain, or kidney tissue emerge from the clinics. The promise of tissue engineering is thus still not fully unleashed. This is mainly related to the challenges associated with producing tissue constructs with similar complexity as native tissue. Bioprinting is an innovative technology that has been used to obliterate these obstacles. Nevertheless, natural organs are highly dynamic and can change shape over time; this is part of their functional repertoire inside the body. 3D-bioprinted tissue constructs should likewise adapt to their surrounding environment and not remain static. For this reason, the new trend in the field is 4D bioprinting – a new method that delivers printed constructs that can evolve their shape and function over time. A key lack of methodology for printing approaches is the scalability, easy-to-print, and intelligent inks. Alginate plays a vital role in driving innovative progress in 3D and 4D bioprinting due to its exceptional properties, scalability, and versatility. Alginate's ability to support 3D and 4D printing methods positions it as a key material for fueling advancements in bioprinting across various applications, from tissue engineering to regenerative medicine and beyond. Here, we review the current progress in designing scalable alginate (Alg) bioinks for 3D and 4D bioprinting in a "dry"/air state. Our focus is primarily on tissue engineering, however, these next-generation materials could be used in the emerging fields of soft robotics, bioelectronics, and cyborganics.
|