Research Info

Title
Alleviating the adverse effects of salinity on Roselle plants by green synthesized nanoparticles
Type Article
Keywords
Roselle, Abiotic stress, Nanoparticles, Osmolytes, Real-time PCR
Abstract
In the present study, an eco-friendly process was made for the rapid synthesis of silver nanoparticles using aqueous leaf extract of Hibiscus sabdariffa. The process was characterized by Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV– visible and X-ray diffraction (XRD). These green silver nanoparticles (NPs) were used for mitigating the adverse effects of salinity on seed germination and growth parameters in plants. Accordingly, two experiments were conducted. In the first experiment, seven concentrations of green silver NPs and nine levels of NaCl:CaCl were apptoed on seeds for germination, and their effects were evaluated. In the second experiment, three concentrations of green silver NPs and NaCl were hypothesized to affect plant growth parameters. Seed germination, plant height, leaf, and root fresh and dry weights, as well as relative water content (RWC), decreased significantly under salt stress. However, green silver NPs intervened by alleviating the adverse effects of stress. Accordingly, green silver NPs were beneficial due to (1) activation of the antioxidant system by enhancing antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and superoxide dismutase (SOD); (2) increase in the amounts of proline, soluble sugars and carbohydrates for osmoprotection; (3) improvements in flavonoid and anthocyanin contents. Real-time PCR showed that flavonoid and anthocyanin contents increased because of higher expressions in chalcone synthase (CHS), flavanone 3‐hydroxylase (F3H), and anthocyanidin synthase (ANS) genes. In conclusion, green silver NPs offered an eco-friendly application for further research on agricultural development.
Researchers Mohammad Sadat-Hosseini (First researcher)
atena naeimi (Second researcher)
Naser Boroomand (Third researcher)
Mostafa Farajpour (Fourth researcher)
mostafa aalifar (Fifth researcher)