Abstract
|
The present study was aimed to evaluate the effects of different levels of salinity on water quality, growth performance, survival rate and body composition of Pacific white shrimp in a heterotrophic/biofloc technology (BFT). Shrimp post-larvae with an average
weight of 74.46 mg were cultured in 300 L fiberglass tanks containing 130 L water at a density of 1 post-larva/L. Three treatments including different levels of salinity of 8, 21 and 32 ppt with three replicates were considered. The highest levels of body weight, growth rate, specific growth rate, increase in body length and survival rate were observed at high salinity level (32 ppt). The highest feed conversion ratio (FCR) and the lowest level of feed efficiency were obtained in shrimps cultured at lowest salinity level (P<0.05). Biochemical analysis of shrimp body composition showed an increase in protein, lipid and ash content as the salinity elevated (P<0.05). The zero-water exchange system used in this study had no significant effects on water quality parameters. The results of the present study concluded that high salinity level (32 ppt) improves the growth and survival of the biofloc supplemented Pacific white shrimp in a BFT system.
|