The present study recorded indigenous knowledge of medicinal plants in Shahrbabak, Iran.
We described a method using data mining algorithms to predict medicinal plants’ mode of
application. Twenty-oneindividuals aged 28 to 81 were interviewed. Firstly, data were collected and analyzed based on quantitative indices such as the informant consensus factor
(ICF), the cultural importance index (CI), and the relative frequency of citation (RFC). Secondly, the data was classified by support vector machines, J48 decision trees, neural networks, and logistic regression. So, 141 medicinal plants from 43 botanical families were
documented. Lamiaceae, with 18 species, was the dominant family among plants, and plant
leaves were most frequently used for medicinal purposes. The decoction was the most commonly used preparation method (56%), and therophytes were the most dominant (48.93%)
among plants. Regarding the RFC index, the most important species are Adiantum capillusveneris L. and Plantago ovata Forssk., while Artemisia auseri Boiss. ranked first based on
the CI index. The ICF index demonstrated that metabolic disorders are the most common
problems among plants in the Shahrbabak region. Finally, the J48 decision tree algorithm
consistently outperforms other methods, achieving 95% accuracy in 10-fold cross-validation
and 70–30 data split scenarios. The developed model detects with maximum accuracy how
to consume medicinal plants.