The Jazmurian basin in Iran is an area affected by climate change and desertification where aerosols and dust storms are common. The aim of this work was to determine the human and ecological risks from atmospheric particles during dust storms in different cities in the Jazmurian basin. For this purpose, the dust samples were collected from Jiroft, Roodbar Jonoob, Ghaleh Ganj, Kahnooj and Iranshahr cities, which are located around the Jazmurian playa in southeast of Iran. Satellite‑based Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products and the Aerosol Optical Depth (AOD) were used to detect aerosol loading in the atmosphere. Moreover, the trace element composition of the collected particles was determined and used to evaluate human and ecological impact assessment using US EPA human health risk assessment and ReCiPe 2016 endpoint hierarchist impact assessment method incorporated in the OpenLCA 1.10.3 software. The human health risk assessment of the particles revealed high non‑carcinogenic risks for children from exposure to nickel and manganese and carcinogenic risks in both adults and children due to hexavalent chromium, arsenic and cobalt during dust storm events. Terrestrial ecotoxicity was found to have the largest ecological impact on ecosystems with copper, nickel and zinc exhibiting the largest contributions