January 15, 2025

Maryam Mazaheri-Tirani

Academic rank: Assistant professor
Address: University of Jiroft
Education: PhD. in Biology, Plant physiology
Phone:
Faculty:

Research

Title
Application of machine learning algorithms for predicting the life-long physiological effects of zinc oxide Micro/Nano particles on Carum copticum
Type Article
Keywords
Artificial intelligence (AI), Media pH alteration, Metal toxicity, Oxidant and antioxidants, Plant pigments, Primary metabolites, Zinc bioavailability
Researchers Maryam Mazaheri-Tirani, Soleyman Dayani, Majid Iranpour Mobarakeh

Abstract

Nanoparticles impose multidimensional effects on living cells that significantly vary among different studies. Machine learning (ML) methods are recommended to elucidate more consistence and predictable relations among the affected parameters. In this study, nine ML algorithms [Support-Vector Regression (SVR), Linear, Bagging, Stochastic Gradient Descent (SGD), Gaussian Process, Random Sample Consensus (RANSAC), Partial Least Squares (PLS), Kernel Ridge, and Random Forest] were applied to evaluate their efficiency in predicting the effects of zinc oxide nanoparticles (ZnO NPs: 0.5, 1, 5, 25, and 125 µM) and microparticles (ZnO MPs: 1, 5, 25, and 125 µM) on Carum copticum. The plant root/shoot biomass; number of leaves, branches, umbellates, and flowers; protein content; reducing sugars; phenolic compounds; chlorophylls (a, b, Total); carotenoids; anthocyanins; H2O2; proline; malondialdehyde (MDA); tissue zinc content; superoxide dismutase (SOD) activity; and media ΔpH were measured and considered input variables. All levels of ZnO MPs treatments increased growth parameters compared to the control (ZnSO4). The highest shoot/root fresh and dry mass were recorded at 5 µM ZnO MPs compared with the control. The root fresh/dry mass under ZnO NPs treatments was more sensitive than shoot parameters. The number of flowers increased by 134 and 79% in MPs and NPs treatments compared to the control, respectively. ZnO NPs reduced protein content by up to 81% in 125 µM NPs compared to ZnSO4. Reducing sugar content increased to 25, 40 and 36% in 5, 25, 125 µM MPs and 67, 68, 26, 26 and 21% in 0.5, 1, 5, 25 and 125 µM NPs treatments, respectively. The pH alteration was more significant under NPs and affected zinc uptake. All levels of ZnO NPs treatments increased growth parameters compared to the control. All ML algorithms showed varied efficiencies in predicting the nonlinear relationships among parameters, with higher efficiency in predicting the behavior of root and shoot dry mass, root fresh weight and number of flowers according to R2 index. The model obtained from SVR with the radial basis function (RBF) kernel was selected as a comprehensive model for predicting and determining the efficacy of the results.