November 21, 2024
Saeed Hajirezaee

Saeed Hajirezaee

Academic rank: Associate professor
Address:
Education: PhD. in شیلات
Phone:
Faculty:

Research

Title
Protective effects of dietary Lavender (Lavandula officinalis) essential oil against Malathion-induced toxicity in rainbow trout (Oncorhynchus mykiss)
Type Article
Keywords
Lavandula officinalis, immunity, malathion, rainbow trout
Researchers Saeed Hajirezaee, Abduladheem Turki Jalil, Rustem Adamovich Shichiyakh, Usama S. Altimari, Sukaina Tuama Ghafel, Yasser Fakri Mustafa

Abstract

The present study was aimed to evaluate the moderating properties of Lavender (Lavandula officinalis) essential oil (LEO) against immunotoxic effects of the organophosphate pesticide, malathion in rainbow trout, Oncorhynchus mykiss. For this purpose, fish were supplemented with LEO at dietary concentrations of 0.5, 1, 2 and 4 ml/kg diet LEO for 56 days. A non-LEO supplemented group was also considered as control. After 57 days feeding trial, biochemicals were assayed in the blood and kidney tissue and then fish exposed to a sub-lethal concentration of malathion [0.24 mg/l equal to 30% of LC50 (0.8 mg/L)]. After 57 days feeding trial, the serum total immunoglobulin, respiratory burst activity, lysozyme activity and complement activity significantly elevated in fish treated with 1 and 2 ml LEO/kg diet compared to non-LEO supplemented individuals (P<0.01). Such changes were not observed in non-LEO supplemented fish (P>0.01). Significant elevations were observed in the expression of the immune genes (iNOS and C3 genes) in fish treated with 0.2–2 mg LEO/kg diet compared to non-supplemented ones (P<0.01). The lysozyme and complement activity significantly decreased in fish fed 4 ml/kg diet (P<0.01). After exposure to malathion, all immune components significantly declined in control and those treated with 0.5, 1 and 4 ml LEO/kg diet (P<0.01). In contrast, the immunity components exhibited no significant changes in fish treated with 2 ml LEO/kg diet after exposure (P>0.01). The expression of iNOS and C3 genes significantly reduced in control and fish fed 0.5, 1 and 4 ml LEO/kg diet in response to malathion (P<0.05). Furthermore, the expression of these genes showed no significant changes in fish fed with 2 ml LEO/kg diet after exposure (P>0.01). The findings of the present study suggested an immunoprotective role for dietary LEO at optimized dietary concentrations of 1 and 2 ml LEO/kg diet against oxidative stress and toxicity induced by malathion. Nevertheless, LEO at high dietary concentration (4 ml/kg diet) had reducing effects on the fish immunity