A metabolomics study was conducted to investigate the molecular bases of oocyte over-ripening in common carp, Cyprinus carpio from a metabolic point of view. The ovulation was induced in fish brooders by intramuscular injection of pituitary extract and oocytes were collected four times post-ovulation with 30 min intervals. A set of 32 metabolites were identified on the NMR spectra of the oocytes, which mainly included energy-linked metabolites, amino acids, methylated metabolites and citric acid cycle (TCA) intermediates. PCA and PLS-DA models clearly separated the post ovulations times, indicating the effects of post-ovulation time on oocyte metabolome content. Based on the loading plot outputs, 15 metabolites including tryptophan, cysteine, AMP, tyrosine, valine, creatine phosphate (PCr), ATP, leucine, inosine, malate, acetate, TMAO, glucose, fumarate and lysine had more effects on the separation of post ovulation times. According to the results of metabolite profiling, the concentrations of glutamine, alanine, tryptophan, lysine and cysteine mostly significantly (P < 0.01) increased at 90 and 120 min post-ovulation. The concentrations of PCr, ATP, inosine and guanosine were relatively stable until 60 min post-ovulation, while significantly (P < 0.01) decreased at 90 and 120 min post ovulation. The TCA metabolites succinate, malate and fumarate significantly (P < 0.01) elevated at 90 and 120 min post-ovulation. AMP concentrations remained relatively unchanged until 30 min and then progressively decreased with time post ovulation (P < 0.01). The concentrations of lactate showed significant elevations at 90 and 120 min post ovulation (P < 0.01). In conclusion, the energetic potentials of the oocytes reduced with time post ovulation. There were apparent elevations in the concentrations of free amino acids, which may be associated with the onset of proteolytic activities in the post ovulatory oocytes. In addition, we found some changes in the apoptotic-related metabolites, which may support the results of previous studies regarding the oxidative stress and following apoptosis in post ovulatory oocytes of fish.