Engineering bioscaffolds for improved cutaneous tissue regeneration remains a healthcare challenge. To help address this problem, we report on the fabrication and characterization of electrospun polyvinyl alcohol and chitosan (PVA/Chit) nanofiber mats loaded honey and Nepeta dschuparensis plant for faster wound healing applications. The morphology of nanofiber mats was examined by SEM and TEM. The physicochemical and thermal stability characterizations were done by FT-IR and TGA/DTA, which reveal the presence of honey and desired plant into the nanofibers. PVA/Chit@Nep/Hon was investigated for wound healing therapy as a potential therapeutic agent. The in vivo wound healing studies on the rats for 21 days revealed the wound healing faster within three weeks by the incorporation of honey and plant into the nanofiber mats and hence these nanofiber mats show great potential in acute and chronic wound healing applications.