۲۲ فروردین ۱۴۰۴

حمیدرضا دربیدی

مرتبه علمی: استادیار
نشانی:
تحصیلات: دکترای تخصصی / ریاضی
تلفن: ۹۱۳۳۵۱۸۷۸۳
دانشکده: دانشکده علوم پایه

مشخصات پژوهش

عنوان
Some results on the covering of groups
نوع پژوهش مقاله ارائه شده
کلیدواژه‌ها
Covering number, Sum of subfields, Galois group.
پژوهشگران حمیدرضا دربیدی

چکیده

Let G be a group. An irredundant n-covering of a group is a finite set of n proper such subgroups of G is the union of Hi but G is not union of n-1 of H_i. Let Σ(G) = {n in N:There is an irredundant n-covering of G}. Then \sigma(G) = min Σ(G) is called the covering number of G. It is well known that for any group G we have 2 not in Σ(G) We prove that for any n >3 there is a group G such that n is in Σ(G). Also we prove that a covering of the Galois group of an extension E/F gives a sum decomposition of E. Also we have a decomposition of group rings RG = RH1 + ... + RHn.