May 17, 2024
Mohammad Hossien khanjani

Mohammad Hossien khanjani

Academic rank: Associate professor
Address: Univercity of Jiroft
Education: PhD. in شیلات
Phone: 09132576390
Faculty:

Research

Title
Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system
Type Article
Keywords
Aquaculture . Zero-water exchange system. Biofloc . Carbon source
Researchers Mohammad Hossien khanjani, Morteza Alizadeh, Moslem Sharifinia

Abstract

The biofloc system is one of the novel sustainable aquaculture systems, and adding carbonaceous organic matter is the basis of the system. This study aimed to evaluate the effects of different carbon sources on water quality, biofloc composition, and growth performance of Nile tilapia (Oreochromis niloticus). In this study, one control group (no carbon source addition) and four biofloc treatments with molasses (TM), starch (TS), barley flour (TB), and corn (TC) addition with three replications were considered. Altogether, 160 Nile tilapia with an average weight of 1.7 g were stocked in each of the 300-l tanks (160 l of water volume). The results of water quality indicated that the lowest levels of dissolved oxygen (5.43 mg/l) and pH (7.28) were observed in the TS treatment, which showed a significant difference (P < 0.05) compared to other treatments. There was a significant difference among various treatments in nitrogen compounds and the total density of heterotrophic bacteria. Biochemical quality of biofloc was affected by various carbon sources. The highest levels of protein (31.09%), lipid (3.89%), and ash (32.79%) were observed in TB, TC, and TM treatments, respectively. The largest biofloc size was obtained in TS treatment. The lowest survival rate and the highest level of weight gain of Nile tilapia were observed in control group. In conclusion, the present study showed that different sources of carbon in the biofloc system have different effects on water quality, biochemical composition, and biofloc size produced in cultivation tanks